Smart Energy Issues Report

Published Tuesday, Feb. 19, 2013

NEW YORK, Feb. 19, 2013 -- /PRNewswire/ -- Reportlinker.com announces that a new market research report is available in its catalogue: Smart Energy Issues Report


Market Intelligence What are the leading causes of today's energy shortages? What role does energy security play? Are new developments in energy efficiency and energy storage the answer? This report reviews these issues and discusses some of the emerging smart technologies that will address generation capacity shortfalls. Energy security can be defined as the role of affordable, reliable sources of energy in the overall national security of a given country. As demand rises and reserves become costlier, governments will increasingly find energy security to be a challenging goal. Political factors (both domestic and foreign), and environmental concerns provide further complications. Trends to date indicate that if solutions to these problems are found they will likely be a networked basket of diverse, non-centralized "smart tech" approaches. This report frames the state of energy generation today and discusses some of the likely candidate technologies that will form the solution. These include new developments in energy storage and energy efficiency.

Primary Focus This report provides essential insight into the reasons for power generation shortfalls and detailed intelligence on the technologies that may address them. Major topics covered include: • Energy Security A briefing on the factors that effect a state's capacity to ensure energy security • Power Generation Capacity o Including an analysis of current global capacity and future forecasts • Fuel Reserves o With a look at global supplies of oil, natural gas, coal, biomass, hyrdrand uranium • Today's Power Grid Information on the composition of the modern grid • Renewable Energy Including the challenges of integrating renewable energy into the grid • Energy Storage A briefing on the major companies and technologies • Energy Efficiency Products A briefing on the major companies and technologies

Reasons tPurchase Smart Technology Report • Gain an in-depth understanding of the crucial issues surrounding energy security • Gain insight into current and future global power generation capacity • Access data on global fuel reserves • Understand the composition of the modern power grid • Understand the challenges associated with integrating renewable energy into the grid • Be briefed on new developments in storage technology and the major companies involved • Be briefed on new developments in energy efficiency products and the major companies involved

Report Highlights Typically, discussions of energy security focus on reserves of oil and gas. "Peak oil" (or the point at which oil production will begin to decline) does not appear have occurred yet, with actual reserves of oil and gas expected to last another 46 and 59 years respectively based on current rates of consumption. This is in part due to new discoveries and advancements in technology that makes the extraction of known but challenging reserves cost-effective. However, companies are growing more reluctant to explore and develop new reserves due to volatile prices and uncertainty over future demand. Geopolitical risk can
influence prices as well, with events in unstable regions rippling outwards to affect other nations. Advancements in energy storage technologies could mean better integration of intermittent renewable energy into the grid. Modern grid systems require predictable and controllable flows of energy that cannot be provided by renewable sources unless the intermittent generation was stored for later use. In addition, storage technologies could allow delay in the production of additional generating capacity, mitigating the need for expensive "peaking" plants to meet spikes in demand. Energy efficiency, particularly regarding power generation, industrial demand, transportation and the residential or commercial sector can also help address these issues. The reuse of waste heat in power generation and industrial facilities, micro hybrid vehicles equipped with stop/start technology, advances in conventional vehicle engines, advances in lighting and re-evaluations of indoor climate control practices are just some of the up-and-coming developments that may be major players in the future.

Contents

1. Introduction 14
2. Executive Summary 15
3. Energy Security 16
4. Power generation capacity 18
5. Growing Shortage 30
Oil 30
Natural Gas 37
Coal 42
Biomass 46
Hydr 47
Uranium 47
6. The Grid 48
Power Demand 48
Base load 49
Peak load 49
Intermediate load 49
Renewables 50
Renewable Portfolio Standards 51
Renewable Issues and the grid 53
Intermittency and variability 53
Capacity factor 53
Loss of Load Probability (LOLP) 54
Capacity credit 54
Spinning reserve 55
7. Renewables 56
Integration costs 57
Balancing supply and demand 59
Import/export electricity 60
Demand response 61
Back up 62
Storage 62
8. Current state of storage 63
Investment 65
Development 67
Economics 69
9. Storage Technologies 75
Mechanical Storage 75
Pumped storage 75
Compressed Air Energy Storage (CAES) 83
Flywheel 92
Electrochemical storage 94
Batteries 95
Lead-acid batteries 98
Advanced lead-acid batteries 99
Nickel cadmium (NiCd) batteries 103
Nickel-metal hydride (NMH) batteries 104
Sodium sulphur (NaS) batteries 104
Sodium Nickel Chloride (NaNiCl) batteries 105
Flow batteries 106
Capacitor 108
Electric double-layer capacitor system 108
Electromagnetic storage 111
Superconducting Magnetic Energy Storage (SMES) 111
Fuel cells 113
Hydrogen Fuel Cell 114
Electric vehicles 120
Start-stop market 154
Thermal storage 171
Concentrating Solar Power 172
Parabolic Trough 172
Parabolic Dish Systems 173
Central Receiver Systems - Solar Tower 173
Solar Chimney Power Plants 174
Types of storage 176
Sensible heat storage 176
Concrete 176
Solute salt 176
Latent heat storage/phase change materials 178
Inorganic PCMs 179
Organic PCMs 179
Development of TES for CSP 180
Single-tank Thermocline 181
Direct molten-salt heat transfer fluid 181
Hot/Cold storage 181
10. Energy Efficiency Products 183
Power generation 183
Siemens 183
Alphabet Energy 184
Echogen Power Systems 184
Electra Therm 185
Ener G Rotors 186
GMZ Energy 186
Ormat 187
O-Flexx Technologies 188
Phononic Devices 188
Pratt & Whitney 188
Recycled Energy Development (RED) 189
Transphorm 189
Transportation sector 190
Ecomotors 190
Transonic Combustion 191
XL Hybrids 192
Residential, industrial and commercial industries 192
Automated monitoring and targeting (AM&T) 193
Boiler controls 193
Building management systems (BMS) 193
Advanced Telemetry 193
Enestic 193
EnOcean 194
PassivSystems 195
Powerhouse Dynamics 197
Demand response management (demand management) 197
Converge 198
HVAC (heating, ventilation and air conditioning) controls 199
BuildingIQ 199
Suntulit 200
Insulation 201
Aspen Aerogels 201
Ecovative 201
eTime energy 202
Guardian 202
Indow Windows 202
Lighting 202
Azzurr 204
Bridgelux 204
d.light design 204
Digital Lumens 206
EcoFit 207
EcoSpark 207
Kateeva 208
Kaneeka 208
Lattice Power 208
Lenmis Lighting 208
Lumiette 209
Lumotec 210
Luxim 210
Novalex 210
Osram Sylvania 210
Lighting daylight phasing control 210
Adura Technologies 211
Encelium 212
Lumenergi 214
Redwood Systems 214
Lighting occupancy control 215
Adura Technologies 215
Encelium 215
Sensor Switch 216
Remote energy controls 216
Tenrehte Technologies 216
Thinkec 217
Variable speed devices (VSD) 217
Voltage power optimisation 217
powerPerfector 218
Vphase 218
Other 218
THT Heat Transfer Technology 218
Xergy 218
Multinational companies with multiple energy efficiency products 221
Eaton 221
GE 221
Honeywell 227
Johnson Controls 227
Panasonic 229
Philips 230
Wireless Kinetically Powered Energy Devices 231
Wireless Solar Powered Photosensor 231
Occupancy Sensing Compatibility 231
Intelligent Transceiver 231
MesoOptics 233
Schneider Electric 233
Siemens 233
Energy efficient models of conventional products 234
Data centres 234
Core4 Systems 234
Sentilla 234
Dryers 235
Hydromatic Technologies 235
11. Sources 242

Tables Table 4-1: Electricity supply disruptions for the first three quarters of 2011 18 Table 4-2: Ofgem's four scenarios for the electricity grid in the UK 26 Table 4-3: Impact of different stresses for Ofgem's four grid scenarios 27 Table 6-1: Three main types of electricity demand 50 Table 6-2: Typical capacity factors for different generating technologies 53 Table 7-1: Variability factors for intermittent renewable energy sources 56 Table 7-2: Summary of US wind integration cost studies 58 Table 8-1: Energy storage technologies by development status 68 Table 8-2: R&D Timelines for Emerging Energy Storage Options 68 Table 8-3: Latest prices for energy storage in Great Britain and Germany 70 Table 8-4: Energy storage technologies 70 Table 8-5: Energy storage characteristics by application 71 Table 8-6: Projected incremental energy delivery cost at 7% discount rate in USD 90 million facilities (ignoring energy cost) for 2015 technology 73 Table 8-7: Comparison of bulk storage systems 73 Table 9-1: Typical values for various pumped-storage plants 77 Table 9-2: Status of selected pumped storage projects at the end of 2010 80 Table 9-3: CAES plants in operation or planned 85 Table 9-4: Comparison of CAES systems 86 Table 9-5: Comparison of batteries 96 Table 9-6: Comparison of different battery energy storage systems 97 Table 9-7: Selected battery energy storage plants in use 98 Table 9-8: Lithium-ion battery characteristics by chemistry 102 Table 9-9: Comparison of the applications of SMES systems 111 Table 9-10: Fuel cell types 114 Table 9-11: Comparison of net storage capacities of large scale storage technologies 119 Table 9-12: International support for fuel cells 120 Table 9-13: Regulations on fuel economy and CO2 emissions in the US and EU 120 Table 9-14: Key differences between PHEVs and BEVs 122 Table 9-15: Specifications of several plug-in vehicles sold or expected to be sold in 2011 123 Table 9-16: Plug-in Vehicle Tracker 129 Table 9-17: Manufacturers of BEV/PHEVs and partnering battery manufacturers 150 Table 9-18: Incentives for electric and plug-in hybrid electric vehicles and low emissions vehicles 159 Table 9-19: US state incentives for electric vehicle 163 Table 9-20: Key Data and Figures for Hybrid, Plug-in Hybrid and Battery Electric Vehicles 168 Table 9-21: Comparison of the main CSP technologies 175 Table 9-22: Sensible storage materials, solid and liquid, temperature, average heat capacity and media cost 177 Table 9-23: Selected low temperature inorganic salt hydrate PCMs 178 Table 9-24: Selected low temperature inorganic salt hydrate PCMs, with melting points 179 Table 9-25: Selected low temperature organic PCMs, with melting points 180 Table 10.1: Ormat’s recovered energy generation projects 187 Table 10.2: Comparison of the main CSP technologies 175 Table 9-26: Comparison of CAES systems 86 Table 9-27: Comparison of batteries 96 Table 9-28: Comparison of different battery energy storage systems 97 Table 9-29: Selected battery energy storage plants in use 98 Table 9-30: Lithium-ion battery characteristics by chemistry 102 Table 9-31: Comparison of the applications of SMES systems 111 Table 9-32: Fuel cell types 114 Table 9-33: Comparison of net storage capacities of large scale storage technologies 119 Table 9-34: International support for fuel cells 120 Table 9-35: Regulations on fuel economy and CO2 emissions in the US and EU 120 Table 9-36: Key differences between PHEVs and BEVs 122 Table 9-37: Specifications of several plug-in vehicles sold or expected to be sold in 2011 123 Table 9-38: Plug-in Vehicle Tracker 129 Table 9-39: Manufacturers of BEV/PHEVs and partnering battery manufacturers 150 Table 9-40: Incentives for electric and plug-in hybrid electric vehicles and low emissions vehicles 159 Table 9-41: US state incentives for electric vehicle 163 Table 9-42: Key Data and Figures for Hybrid, Plug-in Hybrid and Battery Electric Vehicles 168 Table 9-43: Comparison of the main CSP technologies 175 Table 9-44: Sensible storage materials, solid and liquid, temperature, average heat capacity and media cost 177 Table 9-45: Selected low temperature inorganic salt hydrate PCMs 178 Table 9-46: Selected low temperature inorganic salt hydrate PCMs, with melting points 179 Table 9-47: Selected low temperature organic PCMs, with melting points 180 Table 10.2: Comparison of the main CSP technologies 175 Table 9-48: Comparison of CAES systems 86 Table 9-49: Comparison of batteries 96 Table 9-50: Comparison of different battery energy storage systems 97 Table 9-51: Selected battery energy storage plants in use 98 Table 9-52: Lithium-ion battery characteristics by chemistry 102 Table 9-53: Comparison of the applications of SMES systems 111 Table 9-54: Fuel cell types 114 Table 9-55: Comparison of net storage capacities of large scale storage technologies 119 Table 9-56: International support for fuel cells 120 Table 9-57: Regulations on fuel economy and CO2 emissions in the US and EU 120 Table 9-58: Key differences between PHEVs and BEVs 122 Table 9-59: Specifications of several plug-in vehicles sold or expected to be sold in 2011 123 Table 9-60: Plug-in Vehicle Tracker 129 Table 9-61: Manufacturers of BEV/PHEVs and partnering battery manufacturers 150 Table 9-62: Incentives for electric and plug-in hybrid electric vehicles and low emissions vehicles 159 Table 9-63: US state incentives for electric vehicle 163 Table 9-64: Key Data and Figures for Hybrid, Plug-in Hybrid and Battery Electric Vehicles 168 Table 9-65: Comparison of the main CSP technologies 175 Table 9-66: Sensible storage materials, solid and liquid, temperature, average heat capacity and media cost 177 Table 9-67: Selected low temperature inorganic salt hydrate PCMs 178 Table 9-68: Selected low temperature inorganic salt hydrate PCMs, with melting points 179 Table 9-69: Selected low temperature organic PCMs, with melting points 180 Table 10.3: Comparison of Lemnis Pharox bulbs existing light bulbs 208 Table 10.4: Electricity consumption and potential electrical energy savings in the UK service sector 203 Table 10.5: Comparison of Lumiette’s XCELLUME with incandescent lighting 209 Table 10.6: GE’s energy efficient products 223 Table 10.7: Cooleradaire conditioning products 238

Figures Figure 3-1: Supply chain in the gas sector 16 Figure 4-1: Actual and projected world electricity, capacity, generation and consumption, MW, 1990 t2050 20 Figure 4-2: Actual and projected electricity generation and consumption in the G8 and BRIC countries, MW, 1990 t2020 21 Figure 4-3: Actual and projected electricity generation and consumption in North America, Europe, Asia Pacific and Middle East, MW, 1990 t2020 23 Figure 4-4: Actual and projected world generation capacity by type, MW, 1990 t2020 25 Figure 4-5: Peak load reduction and utility costs per energy saved, 1989 t2008 26 Figure 4-6: Key timings for projects to fulfill future shortfalls in the UK’s electricity sector 28 Figure 5-1: Oil production and consumption, thousand barrels per day, 1965 t2010 30 Figure 5-2: Oil refining capacity, throughput and oil consumption and production, thousand barrels per day, 1965 t2010 31 Figure 5-3: Refining margins in US Gulf Coast (USGC), North West Europe (NWE - Rotterdam) and Singapore for different generic refinery configuration (cracking, hydrocracking or coking), USD per barrel, Q1 1992 tQ4 2010 32 Figure 5-4: Oil production in thousand barrels and proven reserves in billion barrels in OPEC and major non-OPEC countries at the end of 2010 33 Figure
5-5: Proven oil reserves in North America and in Major European producing countries, billion barrels, 1980 t2010. 34 Figure 5-6: Proven oil reserves by region, billion barrels, 1980 t2010. 34

Figure 5-7: Net crude oil and oil product trade movements in 2010, thousand barrels per day 35

Figure 5-8: Net oil imports for the US and Europe, thousand barrels per day, 1980 t2010 35

Figure 5-9: Global biofuel production, thousand barrels per day, 2000 t2010 36

Figure 5-10: Natural gas production and consumption, bcm, 1970 t2010 37

Figure 5-11: Proven natural reserves by region, tcm, 1980 t2010. 38

Figure 5-12: Natural gas production and consumption in the US and Russia, bcm, 1970 t2010 39

Figure 5-13: Actual and projected share of primary energy by fuel type, 1970 t2030 41

Figure 5-14: Natural gas production and consumption in China and India, bcm, 1970 t2010 42

Figure 5-15: Oil and gas consumption and imports as a percentage of consumption for China, Europe and the US, 1990 t2030 43

Figure 5-16: China's territorial claim in the South China Sea 44

Figure 5-17: Global coal production and consumption, Mtoe, 1981 t2010. 45

Figure 5-18: Indian coal production and consumption, Mtoe, 1981 t2010 46

Figure 5-19: Global nuclear consumption based on gross generation, Mtoe, 1965 t2010. 47

Figure 6-1: Base, Intermediate and Peak Load by time of day. 50

Figure 6-2: Influence of wind power on power control margin at night. 51

Figure 6-3: RPS policies and goals in the US states. 52

Figure 6-4: Capacity factors by month for wind power for Denmark, Sweden, Germany and the Netherlands. 54

Figure 7-1: Output of large PV plant over one day, with rapid variability due to clouds 56

Figure 7-2: Output from wind turbines during the day with storage capacity. 57

Figure 7-3: Smoothing effect of wind power in Germany. 59

Figure 7-4: Flexibility supply curve 60

Figure 7-5: Balancing demand and supply through the interconnected grid. 61

Figure 7-6: Obstacles to energy storage and demand response. 62

Figure 8-1: Worldwide current installed capacity, MW 63

Figure 8-2: Storage technologies by capacity 64

Figure 8-3: Positioning of Energy Storage Technologies 64

Figure 8-4: Worldwide installed storage capacity for electrical energy at the end of 2010, MW. 65

Figure 8-5: Grid-scale and all storage deals, 2006 t2010 65

Figure 8-6: Energy Storage IPOs, 2006 t2010 66

Figure 8-7: Venture investment in clean tech sector by quarter, Q4 2009 tQ1 2011 67

Figure 9-1: Energy storage applications and technologies. 75

Figure 9-2: Principle of pumped hydrostorage systems. 76

Figure 9-3: Diagram of a pumped storage configuration. 76

Figure 9-4: Growth of adjustable speed pumped hydro 78

Figure 9-5: Underground pumped hydro 79

Figure 9-6: Cost breakdown of pumped hydro 80

Figure 9-7: Schematic of CAES plant with underground compressed air storage. 84

Figure 9-8: Principle of the CAES system 84

Figure 9-9: CAES system in Huntorf, Germany 86

Figure 9-10: Salt structures and existing gas storage site in Europe 88

Figure 9-11: Overview of geological formations in continental US, showing potential CAES siting opportunities based on EPRI geologic studies. 89

Figure 9-12: Energy Bag 90

Figure 9-13: Principle and structure of flywheel 93

Figure 9-14: Operational results of wind power with flywheel 93

Figure 9-15: Comparison of specifications of existing flywheel systems. 94

Figure 9-16: Power density as a function of energy density for energy storage options. 94

Figure 9-17: Idealised load and battery systems. 95

Figure 9-18: Reaction Mechanism of Lead-based Cells 99

Figure 9-19: Specific energy and specific power of different battery types. 100

Figure 9-20: Reaction Mechanism of Li-ion Cells. 101

Figure 9-21: Future of the electric car and lithium ion battery markets. 103

Figure 9-22: Nickel-Based Cells 104

Figure 9-23: Reaction Mechanism of Sodium-based Cells 106

Figure 9-24: ZBB Energy's Zn/Br flow system 108

Figure 9-25: Principle of electric double-layer capacitor 109

Figure 9-26: Structures of capacitors 109

Figure 9-27: Principle of SMES 111

Figure 9-28: Structure of SMES system 112

Figure 9-29: Cost estimation of SMES as a function of stored energy 113

Figure 9-30: Fuel cell 114

Figure 9-31: Comparison of the Honda FXC Clarity with the BYD-E6 and Mitsubishi i-MiEV electric vehicles 116

Figure 9-32: Platinum prices, 1992 t2011. 117

Figure 9-33: Location of hydrogen production facilities in Europe 119

Figure 9-34: Comparison of different electric power train configurations. 121

Figure 9-35: Cost of EVs and PHEVs over Conventional Vehicles. 123

Figure 9-36: Passenger LDV sales by technology type and scenario, million sales per year 124

Figure 9-37: Annual global BEV and PHEV sales in BLUE Map scenario, passenger LDV sales millions, 2010 t2050. 125

Figure 9-38: Lithium-ion battery price forecast, USD per kWh 126

Figure 9-39: Development of alternative transportation options 127

Figure 9-40: Rollout of electric vehicle models 128

Figure 9-41: Electric vehicles and their expected launch date on the US market 128

Figure 9-42: Government target and BEV/PHEV production/sales reported by Original Equipment Manufacturer 151
number of models offered and sales per model through 2020. 152 Figure 9-44: Illustrative cost/benefit timplement hybridisation technologies 153 Figure 9-45: Additional capital cost of hybrid electric vehicles compared tconventional gasoline and diesel vehicles, EUR 154 Figure 9-46: Global market estimates for sales of start-stop or micro-hybrid units, thousand units, 2010 t2015 155 Figure 9-47: XL Hybrid technology 156 Figure 9-48: Battery cost decline versus production 156 Figure 9-49: Projected cost of electric vehicle batteries in the US, USD, 2010 t2030 157 Figure 9-50: Global transportation trend, million barrels per day of oil equivalent (mbdoe), 1980 t2030 . 158 Figure 9-51: Aggregated national targets for BEV/PHEVs 159 Figure 9-52: Upfront Price Support for Low-Carbon Vehicles 166 Figure 9-53: Light-duty vehicle fuel economy . 167 Figure 9-54: Public RD&D (Research, Development and Deployment) spending on BEV/PHEVs and vehicle efficiency in selected countries, 2010, USD million . 167 Figure 9-55: Public spending on electric vehicle RD&D category for selected countries, USD million, 2008 t2011 168 Figure 9-56: Parabolic trough . 172 Figure 9-57: Parabolic dish reflector 173 Figure 9-58: Central receiver system 174 Figure 9-59: CESA-1 Central tower test facility at Plataforma de Almeira, Spain 175 Figure 9-60: Schematic for CSP plant with molten salt storage 177 Figure 10.1: Typical conventional central generation power plant 184 Figure 10. 2: Typical co-generation 'combined heat and power' plant 184 Figure 10.3: Echogen Power Systems' ScCO2 Power Generating Cycle 200kWe - 300kWe (net) Heat Engine System 185 Figure 10.4: Organic Rankine Cycle 186 Figure 10.5: Waste heat recovery . 189 Figure 10.6: Ecomotors' opposition-piston opposed-cylinder engine 190 Figure 10.7: Illustrative cost/benefit timplement hybridisation technologies 192 Figure 10.8: XL Hybrid technology 192 Figure 10.9: Energy harvesting wireless sensor solution from EnOcean . 194 Figure 10.10: Energy harvesting wireless sensor network 194 Figure 10.11: PassivSystems products 195 Figure 10.12: eMonitorTM c-Series system . 197 Figure 10.13: BuildingIQ in action . 200 Figure 10.14: Cost savings and CO2 savings for different energy efficient and renewable technologies 201 Figure 10.15: Average project payback time for different energy efficient building products in years 203 Figure 10.16: SD250 model . 205 Figure 10.17: SD10 model 205 Figure 10.18: S1 model 206 Figure 10.19: EcoFit module 207 Figure 10.20: Encelium Energy Control System (ECS) 213 Figure 10.21: Redwood Systems lighting platform 215 Figure 10.22: Tenrehte Technologies' PICOwatt device 216 Figure 10.23: Modlet 217 Figure 10.24: Snapshot of the GridConnect dashboard 228 Figure 10.25: Calmac's ICEBANK . 236 Figure 10.26: How the Cooleradworks 237 Figure 10.27: Ice Bear system 240

To order this report: Clean_Vehicle Industry: Smart Energy Issues Report

Contact Clare: clare@reportlinker.com US:(339) 368 6001 Intl:+1 339 368 6001

SOURCE Reportlinker